Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Thermal conductivity improvement of composite carbon foams based on tannin-based disordered carbon matrix and graphite fillers

P. Jana, V. Fierro, A. Pizzi and A. Celzard
Materials & Design 83 635 (2015)
https://doi.org/10.1016/j.matdes.2015.06.057

Young’s modulus, thermal conductivity, electrical resistivity and coefficient of thermal expansion of mesophase pitch-based carbon fibers

Francisco G. Emmerich
Carbon 79 274 (2014)
https://doi.org/10.1016/j.carbon.2014.07.068

Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering

D. L. Nika, E. P. Pokatilov, A. S. Askerov and A. A. Balandin
Physical Review B 79 (15) (2009)
https://doi.org/10.1103/PhysRevB.79.155413

Effects of intertube coupling and tube chirality on thermal transport of carbon nanotubes

X. H. Yan, Y. Xiao and Z. M. Li
Journal of Applied Physics 99 (12) (2006)
https://doi.org/10.1063/1.2206851

Thermal Conductivity of Pure Metals and Alloys

C. Uher
Landolt-Börnstein - Group III Condensed Matter, Thermal Conductivity of Pure Metals and Alloys 15c 430 (1991)
https://doi.org/10.1007/10031435_91

Thermal Conductivity of Pure Metals and Alloys

C. Uher
Landolt-Börnstein - Group III Condensed Matter, Thermal Conductivity of Pure Metals and Alloys 15c 445 (1991)
https://doi.org/10.1007/10031435_93

Thermal Conductivity of Pure Metals and Alloys

C. Uher
Landolt-Börnstein - Group III Condensed Matter, Thermal Conductivity of Pure Metals and Alloys 15c 426 (1991)
https://doi.org/10.1007/10031435_90

Thermal transport properties of carbon-carbon fibre composites III. Mathematical modelling

Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 430 (1878) 199 (1990)
https://doi.org/10.1098/rspa.1990.0088

Thermal transport properties of carbon–carbon fibre composites II. Microstructural characterization

Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 430 (1878) 183 (1990)
https://doi.org/10.1098/rspa.1990.0087

Heat conduction characteristics of a carbon-fibre-reinforced lithia-alumino-silicate glass-ceramic

D. P. H. Hasselman, L. F. Johnson, R. Syed, Mark P. Taylor and K. Chyungi
Journal of Materials Science 22 (2) 701 (1987)
https://doi.org/10.1007/BF01160791

The temperature variation of the thermal conductivity of benzene-derived carbon fibers

L. Piraux, B. Nysten, A. Haquenne, et al.
Solid State Communications 50 (8) 697 (1984)
https://doi.org/10.1016/0038-1098(84)90966-9

Electronic and lattice contributions to the thermal conductivity of graphite intercalation compounds

J. -P. Issi, J. Heremans and M. S. Dresselhaus
Physical Review B 27 (2) 1333 (1983)
https://doi.org/10.1103/PhysRevB.27.1333

High-magnetic-field thermal-conductivity measurements in graphite intercalation compounds

J. Heremans, M. Shayegan, M. S. Dresselhaus and J -P. Issi
Physical Review B 26 (6) 3338 (1982)
https://doi.org/10.1103/PhysRevB.26.3338

Thermophysical Properties Research Literature Retrieval Guide 1900–1980

J. F. Chaney, V. Ramdas, C. R. Rodriguez and M. H. Wu
Thermophysical Properties Research Literature Retrieval Guide 1900–1980 213 (1982)
https://doi.org/10.1007/978-1-4757-1481-4_3

Thermal Conductivity of Electron-Irradiated Pyrolytic Graphite

Takeshi Nihira and Tadao Iwata
Journal of the Physical Society of Japan 49 (5) 1916 (1980)
https://doi.org/10.1143/JPSJ.49.1916

Low-temperature magnetothermal conductivity of pyrolytic graphite

C. K. Chau and S. Y. Lu
Journal of Low Temperature Physics 15 (5-6) 447 (1974)
https://doi.org/10.1007/BF00654619