La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
Armand Hadni , Yolande Henninger , Robert Thomas , Pierre Vergnat , Bruno Wyncke
J. Phys. France, 26 6 (1965) 345-360
Citations de cet article :
57 articles
Pyroelectric Materials
Pyroelectric Materials 19 (2022) https://doi.org/10.1002/9783527839742.ch2
Optical studies of ferroelectric and ferroelastic domain walls
G F Nataf and M Guennou Journal of Physics: Condensed Matter 32 (18) 183001 (2020) https://doi.org/10.1088/1361-648X/ab68f3
Handbook of Advanced Nondestructive Evaluation
Gunnar Suchaneck, Agnes Eydam and Gerald Gerlach Handbook of Advanced Nondestructive Evaluation 1419 (2019) https://doi.org/10.1007/978-3-319-26553-7_15
Handbook of Advanced Non-Destructive Evaluation
Gunnar Suchaneck, Agnes Eydam and Gerald Gerlach Handbook of Advanced Non-Destructive Evaluation 1 (2018) https://doi.org/10.1007/978-3-319-30050-4_15-1
Piezo- and pyroelectric microscopy
Athanasios Batagiannis, Michael Wübbenhorst and Jürg Hulliger Current Opinion in Solid State and Materials Science 14 (5) 107 (2010) https://doi.org/10.1016/j.cossms.2010.06.002
A 2400 year history of pyroelectricity: from Ancient Greece to exploration of the solar system
S.B. Lang British Ceramic Transactions 103 (2) 65 (2004) https://doi.org/10.1179/096797804225012765
Handbook of Advanced Electronic and Photonic Materials and Devices
Sidney B. Lang and Dilip K. Das-Gupta Handbook of Advanced Electronic and Photonic Materials and Devices 1 (2001) https://doi.org/10.1016/B978-012513745-4/50036-6
Atom, Molecule, and Cluster Beams I
Hans Pauly Springer Series on Atomic, Optical, and Plasma Physics, Atom, Molecule, and Cluster Beams I 28 215 (2000) https://doi.org/10.1007/978-3-662-04213-7_5
Electrets In Engineering
Vladimir N. Kestelman, Leonid S. Pinchuk and Victor A. Goldade Electrets In Engineering 47 (2000) https://doi.org/10.1007/978-1-4615-4455-5_2
Uncooled Infrared Imaging Arrays and Systems
Michael F. Tompsett Semiconductors and Semimetals, Uncooled Infrared Imaging Arrays and Systems 47 219 (1997) https://doi.org/10.1016/S0080-8784(08)62693-9
Uncooled Infrared Imaging Arrays and Systems
Rudolph G. Buser and Michael F. Tompsett Semiconductors and Semimetals, Uncooled Infrared Imaging Arrays and Systems 47 1 (1997) https://doi.org/10.1016/S0080-8784(08)62687-3
Physical Optics and Light Measurements
T.O. Poehler Methods in Experimental Physics, Physical Optics and Light Measurements 26 291 (1989) https://doi.org/10.1016/S0076-695X(08)60226-4
High precision lattice parameter determination of KDP with different crystal perfection
S. Grosswig, W. Melle, U. Schellenberger and W. Zahorowski Crystal Research and Technology 18 (1) (1983) https://doi.org/10.1002/crat.2170180129
Thin Film Device Applications
Kasturi Lal Chopra and Inderjeet Kaur Thin Film Device Applications 235 (1983) https://doi.org/10.1007/978-1-4613-3682-2_7
Thermophysical Properties Research Literature Retrieval Guides
J. F. Chaney, V. Ramdas, C. R. Rodriguez and M. H. Wu Thermophysical Properties Research Literature Retrieval Guides 281 (1982) https://doi.org/10.1007/978-1-4757-1496-8_3
Pyroelectric materials, their properties and applications
J. C. Joshi and A. L. Dawar physica status solidi (a) 70 (2) 353 (1982) https://doi.org/10.1002/pssa.2210700202
Applications of the pyroelectric effect
A Hadni Journal of Physics E: Scientific Instruments 14 (11) 1233 (1981) https://doi.org/10.1088/0022-3735/14/11/002
Applications of the pyroelectric probe technique to the study of domain wall motion in ferroelectric NaNO2and TGS
Chan Dinh Tran, Xavier Gerbaux and Armand Hadni Ferroelectrics 33 (1) 31 (1981) https://doi.org/10.1080/00150198108008066
Optical and Infrared Detectors
E. H. Putley Topics in Applied Physics, Optical and Infrared Detectors 19 71 (1980) https://doi.org/10.1007/3540101764_11
Recent developments in ferroelectrics for infrared detectors
R. W. Whatmore, J. M. Herbert and F. W. Ainger Physica Status Solidi (a) 61 (1) 73 (1980) https://doi.org/10.1002/pssa.2210610106
Pyroelectric detectors and materials
S.T. Liu and D. Long Proceedings of the IEEE 66 (1) 14 (1978) https://doi.org/10.1109/PROC.1978.10835
Photo-Electronic Image Devices, Proceedings of the Sixth Symposium
A.L. Harmer and W.M. Wreathall Advances in Electronics and Electron Physics, Photo-Electronic Image Devices, Proceedings of the Sixth Symposium 40 313 (1976) https://doi.org/10.1016/S0065-2539(08)61482-1
Co2 Lasers Effects and Applications
Co2 Lasers Effects and Applications 391 (1976) https://doi.org/10.1016/B978-0-12-223350-0.50020-1
A theoretical interpretation of the pyroelectric response from a scanning micro heat probe
R V Latham Journal of Physics D: Applied Physics 9 (15) 2295 (1976) https://doi.org/10.1088/0022-3727/9/15/021
Laser scanning microscope for pyroelectric display in real time
A. Hadni, J. M. Bassia, X. Gerbaux and R. Thomas Applied Optics 15 (9) 2150 (1976) https://doi.org/10.1364/AO.15.002150
Effect of supersaturation and fluid shear on the habit and homogeneity of potassium dihydrogen phosphate crystals
M.S. Joshi and Baby K. Paul Journal of Crystal Growth 22 (4) 321 (1974) https://doi.org/10.1016/0022-0248(74)90177-8
Pyroelectric polymer films
A.W. Stephens, A.W. Levine, J. Fech, et al. Thin Solid Films 24 (2) 361 (1974) https://doi.org/10.1016/0040-6090(74)90181-3
Pyroelectric Vidicon Target Materials
L. Garn and E. Sharp IEEE Transactions on Parts, Hybrids, and Packaging 10 (4) 208 (1974) https://doi.org/10.1109/TPHP.1974.1134867
A nondestructive pyroelectric display of an antiparallel polarization distribution in single-crystal barium titanate
W Clay, B J Evans and R V Latham Journal of Physics D: Applied Physics 7 (9) 1291 (1974) https://doi.org/10.1088/0022-3727/7/9/316
Hot-Pressed TGS for Pyroelectric Detector Applications
Peter A. Jansson Applied Optics 13 (6) 1293 (1974) https://doi.org/10.1364/AO.13.001293
Present Status of the Applications of Pyroelectricity to the Detection of Far-Lnlrared Radiations
A. Hadni IEEE Transactions on Microwave Theory and Techniques 22 (12) 1016 (1974) https://doi.org/10.1109/TMTT.1974.1128417
Dynamics of Thin-Film Thermal Detectors in Infrared Imaging Systems 1: Basic Equations and Fourier Analysis
U. Martens and F. Kneubühl Applied Optics 13 (6) 1455 (1974) https://doi.org/10.1364/AO.13.001455
Reversible domain switching in ferroelectric triglycine sulphate (TGS) by Laser
A. Hadni, X. Gerbaux, D. Chanal, R. Thomas and J. P. Lambert Ferroelectrics 5 (1) 259 (1973) https://doi.org/10.1080/00150197308243956
Coatings, Systems, and Composites
Y. S. Touloukian, J. Koolhaas Gerritsen and W. H. Shafer Coatings, Systems, and Composites 117 (1973) https://doi.org/10.1007/978-1-4757-6836-7_3
Laser study of reversible nucleation sites in triglycine sulphate and applications to pyroelectric detectors
Armand Hadni and Robert Thomas Ferroelectrics 4 (1) 39 (1972) https://doi.org/10.1080/00150197208241518
Pyroelectric coefficient direct measurement technique and application to a nsec response time detector
R. L. Byer and C. B. Roundy Ferroelectrics 3 (1) 333 (1972) https://doi.org/10.1080/00150197208235326
Pyroelectric Coefficient Direct Measurement Technique and Application to a Nsec Response Time Detector
R.L. Byer and C.B. Roundy IEEE Transactions on Sonics and Ultrasonics 19 (2) 333 (1972) https://doi.org/10.1109/T-SU.1972.29679
Infrared Generation by Coherent Excitation of Polaritons
F. De Martini Physical Review B 4 (12) 4556 (1971) https://doi.org/10.1103/PhysRevB.4.4556
Infrared Detectors
E.H. Putley Semiconductors and Semimetals, Infrared Detectors 5 259 (1970) https://doi.org/10.1016/S0080-8784(08)62817-3
Electrical constants of triglycine sulphate, applications to pyroelectricity and the detection of far infrared radiations
Armand Hadni Radiation Effects 4 (2) 195 (1970) https://doi.org/10.1080/00337577008242001
Theory of Optical Heterodyne Detection Using the Pyroelectric Effect
S. T. Eng and R. A. Gudmundsen Applied Optics 9 (1) 161 (1970) https://doi.org/10.1364/AO.9.000161
Constantes optiques du séléniate de glycocolle de l'infrarouge proche à l'infrarouge lointain et dans le domaine radio-électrique
Denise Grandjean, Jacques Claudel, François Bréhat, et al. Journal de Physique 31 (5-6) 471 (1970) https://doi.org/10.1051/jphys:01970003105-6047100
Photo-Electronic Image Devices, Proceedings of the Fourth Symposium
F. Le Carvennec Advances in Electronics and Electron Physics, Photo-Electronic Image Devices, Proceedings of the Fourth Symposium 28 265 (1969) https://doi.org/10.1016/S0065-2539(08)61361-X
Sur la Biréfringence et le Pouvoir Rotatoire du Quartz dans l'Infrarouge Lointain à la Température de l'Azote Liquide et à Température Ordinaire
Daniel Charlemagne and Armand Handi Optica Acta: International Journal of Optics 16 (1) 53 (1969) https://doi.org/10.1080/713818151
Pyroelectric Thermometer for Use at Low Temperatures
Sidney B. Lang, Steven A. Shaw, Lynn H. Rice and K. D. Timmerhaus Review of Scientific Instruments 40 (2) 274 (1969) https://doi.org/10.1063/1.1683919
Transient Temperature Response of Thin Film Thermal Detectors in Infrared Imaging Systems
A. I. Carlson Applied Optics 8 (2) 243 (1969) https://doi.org/10.1364/AO.8.000243
Calculateur analogique pour spectroscopie a transformation de Fourier dans l'infrarouge lointain
Armand Hadni and Robert Thomas Optics Communications 1 (1) 9 (1969) https://doi.org/10.1016/0030-4018(69)90069-8
Constantes optiques du sulfate de glycocolle de l'infrarouge proche a l'infrarouge lointain application a la pyroélectricité
Armand Hadni, Denise Grandjean, François Bréhat, et al. Journal de Physique 30 (4) 377 (1969) https://doi.org/10.1051/jphys:01969003004037700
Response of a Triglycine Sulphate Pyroelectric Detector to High Frequencies (300 kHz)
Armand Hadni, Robert Thomas and Jean Perrin Journal of Applied Physics 40 (7) 2740 (1969) https://doi.org/10.1063/1.1658071
Improvements in the detectivity of infrared pyroelectric detectors
Armand Hadni Optics Communications 1 (5) 251 (1969) https://doi.org/10.1016/0030-4018(69)90048-0
Measurement of the dispersion of the nonlinear optical polarizability in gap by coherent ir generation in the polariton region
F De Martini Physics Letters A 30 (9) 547 (1969) https://doi.org/10.1016/0375-9601(69)90299-0
Pyroelectric Ceramics as Detectors of Fast Atomic Beams
Klaus H. Berkner, Booth R. Myers and Robert V. Pyle Review of Scientific Instruments 39 (8) 1204 (1968) https://doi.org/10.1063/1.1683617
FERROELECTRIC Sr1−xBaxNb2O6 AS A FAST AND SENSITIVE DETECTOR OF INFRARED RADIATION
A. M. Glass Applied Physics Letters 13 (4) 147 (1968) https://doi.org/10.1063/1.1652547
Chemical Far Infrared Spectroscopy
J. W. Brasch, Y. Mikawa and R. J. Jakobsen Applied Spectroscopy Reviews 1 (2) 187 (1968) https://doi.org/10.1080/05704926808547585
Infra-red radiation detection by the pyroelectric effect
J H Ludlow, W H Mitchell, E H Putley and N Shaw Journal of Scientific Instruments 44 (9) 694 (1967) https://doi.org/10.1088/0950-7671/44/9/315
Essentials of Modern Physics Applied to the Study of the Infrared
ARMAND HADNI Essentials of Modern Physics Applied to the Study of the Infrared 247 (1967) https://doi.org/10.1016/B978-0-08-002864-4.50010-4
Solid state devices for infra-red detection
E H Putley Journal of Scientific Instruments 43 (12) 857 (1966) https://doi.org/10.1088/0950-7671/43/12/301