La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
W.L. Roth
J. Phys. France, 25 5 (1964) 507-515
Citations de cet article :
113 articles | Pages :
Magnetism evolution in Ni-doped Co3O4
Xiaobo Wang, Congmian Zhen, Jiaxuan Feng, Xiaoxu Zhang, Lu Liu, Li Ma, Guoke Li, Dewei Zhao and Denglu Hou Physica B: Condensed Matter 701 416931 (2025) https://doi.org/10.1016/j.physb.2025.416931
Thermodynamic assessment of the Al2O3-Fe2O3-FeO system by introducing the AlO2−1 species into the thermodynamic model for liquid phase
Fengyang Gao, Yuling Liu, Ligang Zhang, Hans Jürgen Seifert and Yong Du Journal of Molecular Liquids 425 127191 (2025) https://doi.org/10.1016/j.molliq.2025.127191
Inter-cation charge transfer mediated antiferromagnetism in
Co1+xIr2−xS4
Liang-Wen Ji, Si-Qi Wu, Bai-Zhuo Li, Wu-Zhang Yang, Shi-Jie Song, Yi Liu, Jing Li, Zhi Ren and Guang-Han Cao Physical Review B 110 (15) (2024) https://doi.org/10.1103/PhysRevB.110.155139
In situ and Operando Characterisation in the Preferential Oxidation of Carbon Monoxide over Base Metal Oxide Catalysts: A Review
Thulani M. Nyathi, Mohamed I. Fadlalla and Michael Claeys ChemCatChem 16 (14) (2024) https://doi.org/10.1002/cctc.202400285
Influence of fabrication conditions on the structural characteristics and the magnetic properties of FeAl2O4
Takayuki Nakane, Satoshi Ishii, Tetsuo Uchikoshi and Takashi Naka Journal of the American Ceramic Society 106 (4) 2317 (2023) https://doi.org/10.1111/jace.18915
Strong correlation between structure and magnetic ordering in tetragonally distorted off-stoichiometric spinels
Mn1.15Co1.85O4
and
Mn1.17Co1.60Cu0.23O4
P. Pramanik, M. Reehuis, M. Tovar, et al. Physical Review Materials 6 (3) (2022) https://doi.org/10.1103/PhysRevMaterials.6.034407
MnTa2N4: A Ternary Nitride Spinel with a Strong Magnetic Frustration
Rafael Trócoli, Carlos Frontera, Judith Oró-Solé, et al. Chemistry of Materials 34 (13) 6098 (2022) https://doi.org/10.1021/acs.chemmater.2c01240
Magnetoelectric effect in a single crystal of the frustrated spinel
CoAl2O4
Chandan De, Rabindranath Bag, Surjeet Singh, et al. Physical Review B 103 (9) (2021) https://doi.org/10.1103/PhysRevB.103.094406
Critical assessment and thermodynamic modeling of the Al-Mn-O system
M. Ilatovskaia and O. Fabrichnaya Journal of Alloys and Compounds 884 161153 (2021) https://doi.org/10.1016/j.jallcom.2021.161153
On the complexity of spinels: Magnetic, electronic, and polar ground states
Vladimir Tsurkan, Hans-Albrecht Krug von Nidda, Joachim Deisenhofer, Peter Lunkenheimer and Alois Loidl Physics Reports 926 1 (2021) https://doi.org/10.1016/j.physrep.2021.04.002
The magnetic, electronic, optical, and structural properties of the AB2O4 (A = Mn, Fe, co; B = Al, Ga, In) spinels: Ab initio study
V.S. Zhandun Journal of Magnetism and Magnetic Materials 533 168015 (2021) https://doi.org/10.1016/j.jmmm.2021.168015
Unusual magnetism in
CuxCo3−xO4
nanoparticles
M. Shepit, V. K. Paidi, C. A. Roberts, G. K. Reddy and J. van Lierop Physical Review B 103 (2) (2021) https://doi.org/10.1103/PhysRevB.103.024448
Support and gas environment effects on the preferential oxidation of carbon monoxide over Co3O4 catalysts studied in situ
Thulani M. Nyathi, Mohamed I. Fadlalla, Nico Fischer, et al. Applied Catalysis B: Environmental 297 120450 (2021) https://doi.org/10.1016/j.apcatb.2021.120450
Competing ferro- and antiferromagnetic exchange drives shape-selective $$\hbox{Co}_3\hbox{O}_4$$ nanomagnetism
Michael Shepit, Vinod K. Paidi, Charles A. Roberts and Johan van Lierop Scientific Reports 10 (1) (2020) https://doi.org/10.1038/s41598-020-77650-6
Environment-Dependent Catalytic Performance and Phase Stability of Co3O4in the Preferential Oxidation of Carbon Monoxide StudiedIn Situ
Thulani M. Nyathi, Nico Fischer, Andrew P. E. York and Michael Claeys ACS Catalysis 10 (20) 11892 (2020) https://doi.org/10.1021/acscatal.0c02653
Multiferroic spin-superfluid and spin-supersolid phases in
MnCr2S4
Alexander Ruff, Zhaosheng Wang, Sergei Zherlitsyn, et al. Physical Review B 100 (1) (2019) https://doi.org/10.1103/PhysRevB.100.014404
Spectroscopic and magnetic investigations of a spin-frustrated Mn-doped CoAl2O4 spinel
Suman Kalyan Pradhan, Biswajit Dalal, Ankita Sarkar and Subodh Kumar De Physical Chemistry Chemical Physics 21 (2) 842 (2019) https://doi.org/10.1039/C8CP07140C
Combined Theoretical Approach for Identifying Battery Materials: Al3+ Mobility in Oxides
Tina Nestler, Falk Meutzner, Artem A. Kabanov, et al. Chemistry of Materials 31 (3) 737 (2019) https://doi.org/10.1021/acs.chemmater.8b03631
Synthesis and Characterization of Cobalt Oxide Nanoparticles
K. Prema Latha, C. Prema and S. Meenakshi Sundar Journal of Nanoscience and Technology 4 (5) 475 (2018) https://doi.org/10.30799/jnst.144.18040504
Prachi Mohanty, Sourav Marik and Ravi P. Singh 1942 130055 (2018) https://doi.org/10.1063/1.5029125
Evolution of magnetic and orbital properties in the magnetically diluted
A
-site spinel
Cu1−xZnxRh2O4
A. V. Zakrzewski, S. Gangopadhyay, G. J. MacDougall, et al. Physical Review B 97 (21) (2018) https://doi.org/10.1103/PhysRevB.97.214411
Ferrimagnetism in manganese-rich gallium and aluminium spinels due to mixed valence Mn2+–Mn3+ states
Maged F. Bekheet, Lukas Schlicker, Andrew Doran, Konrad Siemensmeyer and Aleksander Gurlo Dalton Transactions 47 (8) 2727 (2018) https://doi.org/10.1039/C7DT04765G
Synthesis and Characterization of Co3O4-MnxCo3-xO4 Core-Shell Nanoparticles
Ning Bian, Robert A. Mayanovic and Mourad Benamara MRS Advances 3 (47-48) 2899 (2018) https://doi.org/10.1557/adv.2018.453
Linear magnetoelectric effect as a signature of long-range collinear antiferromagnetic ordering in the frustrated spinel
CoAl2O4
Somnath Ghara, N. V. Ter-Oganessian and A. Sundaresan Physical Review B 95 (9) (2017) https://doi.org/10.1103/PhysRevB.95.094404
Spin glass behavior in frustrated quantum spin system CuAl2O4with a possible orbital liquid state
R Nirmala, Kwang-Hyun Jang, Hasung Sim, et al. Journal of Physics: Condensed Matter 29 (13) 13LT01 (2017) https://doi.org/10.1088/1361-648X/aa5c72
Magnetostructural coupling and magnetodielectric effects in the
A
-site cation-ordered spinel
LiFeCr4O8
Rana Saha, R. Dhanya, Christophe Bellin, et al. Physical Review B 96 (21) (2017) https://doi.org/10.1103/PhysRevB.96.214439
Magnetically tunable bipolar switching of the exchange-bias field in Co 2 TiO 4
A. Wei, S. Tao, Y. Fang, et al. Journal of Magnetism and Magnetic Materials 441 361 (2017) https://doi.org/10.1016/j.jmmm.2017.06.002
Chemically synthesized magnetic Co–Fe–Ga alloy nanoparticles
Takatomo Imai and Mutsuhiro Shima Japanese Journal of Applied Physics 56 (1S) 01AE04 (2017) https://doi.org/10.7567/JJAP.56.01AE04
Size dependent stability of cobalt nanoparticles on silica under high conversion Fischer–Tropsch environment
Moritz Wolf, Hendrik Kotzé, Nico Fischer and Michael Claeys Faraday Discussions 197 243 (2017) https://doi.org/10.1039/C6FD00200E
Revisiting the ground state of
CoAl2O4
: Comparison to the conventional antiferromagnet
MnAl2O4
G. J. MacDougall, A. A. Aczel, Yixi Su, et al. Physical Review B 94 (18) (2016) https://doi.org/10.1103/PhysRevB.94.184422
First-principles electronic structure calculations for the whole spinel oxide solid solution range MnxCo3−xO4 (0 ≤ x ≤ 3) and their comparison with experimental data
Rémi Arras, Thi Ly Le, Sophie Guillemet-Fritsch, Pascal Dufour and Christophe Tenailleau Physical Chemistry Chemical Physics 18 (37) 26166 (2016) https://doi.org/10.1039/C6CP05554K
Critical Assessment and Thermodynamic Modeling of the Al-Fe-O System
Denis Shishin, Viktoria Prostakova, Evgueni Jak and Sergei A. Decterov Metallurgical and Materials Transactions B 47 (1) 397 (2016) https://doi.org/10.1007/s11663-015-0493-9
Compressibility and structural stability of spinel-type MnIn2O4
Maged F. Bekheet, Leonid Dubrovinsky and Aleksander Gurlo Journal of Solid State Chemistry 230 301 (2015) https://doi.org/10.1016/j.jssc.2015.07.016
A new, layered monoclinic phase of Co3O4 at high pressure
Thanayut Kaewmaraya, Wei Luo, Xiao Yang, Puspamitra Panigrahi and Rajeev Ahuja Physical Chemistry Chemical Physics 17 (30) 19957 (2015) https://doi.org/10.1039/C5CP02126J
Critical evaluation and thermodynamic modeling of the Al–Mn–O (Al2O3–MnO–Mn2O3) system
Saikat Chatterjee and In-Ho Jung Journal of the European Ceramic Society 34 (6) 1611 (2014) https://doi.org/10.1016/j.jeurceramsoc.2013.12.017
Synthesis of cobalt aluminate nanopigments by a non-aqueous sol–gel route
Mohamed Karmaoui, Nuno J. O. Silva, Vitor S. Amaral, et al. Nanoscale 5 (10) 4277 (2013) https://doi.org/10.1039/c3nr34229h
Spin Glass Order by Antisite Disorder in the Highly Frustrated Spinel Oxide CoAl2O4
Kentaro Hanashima, Yuta Kodama, Daisuke Akahoshi, Chikahide Kanadani and Toshiaki Saito Journal of the Physical Society of Japan 82 (2) 024702 (2013) https://doi.org/10.7566/JPSJ.82.024702
Experimental evidence of a collinear antiferromagnetic ordering in the frustrated CoAl2O4spinel
B. Roy, Abhishek Pandey, Q. Zhang, et al. Physical Review B 88 (17) (2013) https://doi.org/10.1103/PhysRevB.88.174415
Low temperature synthesis of nanocrystalline MnIn2O4 spinel
Maged F. Bekheet, Gerhard Miehe, Claudia Fasel, Aleksander Gurlo and Ralf Riedel Dalton Transactions 41 (12) 3374 (2012) https://doi.org/10.1039/c2dt12473d
Cobalt Oxides
Cobalt Oxides 211 (2012) https://doi.org/10.1002/9783527645527.ch5
Kinetically inhibited order in a diamond-lattice antiferromagnet
Gregory J. MacDougall, Delphine Gout, Jerel L. Zarestky, et al. Proceedings of the National Academy of Sciences 108 (38) 15693 (2011) https://doi.org/10.1073/pnas.1107861108
Sophie Guillemet-Fritsch, Christophe Tenailleau, Helene Bordeneuve and Abel Rousset 67 143 (2010) https://doi.org/10.4028/www.scientific.net/AST.67.143
Evolution of magnetic states in frustrated diamond lattice antiferromagneticCo(Al1−xCox)2O4spinels
O. Zaharko, A. Cervellino, V. Tsurkan, N. B. Christensen and A. Loidl Physical Review B 81 (6) (2010) https://doi.org/10.1103/PhysRevB.81.064416
Microscopic evidence for the stacking faults and metallic properties of a triangular lattice CoO2with a three-layer structure
Masashige Onoda and Asami Sugawara Journal of Physics: Condensed Matter 22 (3) 035602 (2010) https://doi.org/10.1088/0953-8984/22/3/035602
Functional Oxides
John E. Greedan Functional Oxides 41 (2010) https://doi.org/10.1002/9780470686072.ch2
Magnetic dilution of the iron sublattice in CoFe2−xScxO4 (0≤x≤1)
C. Lefevre, F. Roulland, N. Viart, J.M. Greneche and G. Pourroy Journal of Solid State Chemistry 183 (11) 2623 (2010) https://doi.org/10.1016/j.jssc.2010.09.004
Magnetic frustration on the diamond lattice of theA-site magnetic spinelsCoAl2−xGaxO4: The role of lattice expansion and site disorder
Brent C. Melot, Katharine Page, Ram Seshadri, et al. Physical Review B 80 (10) (2009) https://doi.org/10.1103/PhysRevB.80.104420
Spin-Orbital Singlet and Quantum Critical Point on the Diamond Lattice:FeSc2S4
Gang Chen, Leon Balents and Andreas P. Schnyder Physical Review Letters 102 (9) (2009) https://doi.org/10.1103/PhysRevLett.102.096406
Excitation spectrum and magnetic field effects in a quantum critical spin-orbital system: The case ofFeSc2S4
Gang Chen, Andreas P. Schnyder and Leon Balents Physical Review B 80 (22) (2009) https://doi.org/10.1103/PhysRevB.80.224409
Spin frustration and magnetic exchange in cobalt aluminum oxide spinels
N. Tristan, V. Zestrea, G. Behr, et al. Physical Review B 77 (9) (2008) https://doi.org/10.1103/PhysRevB.77.094412
Order-by-disorder and spiral spin-liquid in frustrated diamond-lattice antiferromagnets
Doron Bergman, Jason Alicea, Emanuel Gull, Simon Trebst and Leon Balents Nature Physics 3 (7) 487 (2007) https://doi.org/10.1038/nphys622
Spatial inhomogeneity of magnetic moments in the cobalt oxide spinelCo3O4
Y. Ikedo, J. Sugiyama, H. Nozaki, et al. Physical Review B 75 (5) (2007) https://doi.org/10.1103/PhysRevB.75.054424
Spin liquid versus spin solid in A-site spinels
A. Krimmel, V. Tsurkan, D. Sheptyakov and A. Loidl Physica B: Condensed Matter 378-380 583 (2006) https://doi.org/10.1016/j.physb.2006.01.413
Magnetic ordering and spin excitations in the frustrated magnetMnSc2S4
A. Krimmel, M. Mücksch, V. Tsurkan, et al. Physical Review B 73 (1) (2006) https://doi.org/10.1103/PhysRevB.73.014413
Geometric frustration in the cubic spinelsMAl2O4(M=Co, Fe, and Mn)
N. Tristan, J. Hemberger, A. Krimmel, et al. Physical Review B 72 (17) (2005) https://doi.org/10.1103/PhysRevB.72.174404
Vibronic and Magnetic Excitations in the Spin-Orbital Liquid State ofFeSc2S4
A. Krimmel, M. Mücksch, V. Tsurkan, et al. Physical Review Letters 94 (23) (2005) https://doi.org/10.1103/PhysRevLett.94.237402
Spin and Orbital Frustration inMnSc2S4andFeSc2S4
V. Fritsch, J. Hemberger, N. Büttgen, et al. Physical Review Letters 92 (11) (2004) https://doi.org/10.1103/PhysRevLett.92.116401
Orbital physics in sulfur spinels: ordered, liquid and glassy ground states
N Büttgen, J Hemberger, V Fritsch, et al. New Journal of Physics 6 191 (2004) https://doi.org/10.1088/1367-2630/6/1/191
Synthesis and characterization of nanophasic LaCoO3 powders
L. Armelao, G. Bandoli, D. Barreca, et al. Surface and Interface Analysis 34 (1) 112 (2002) https://doi.org/10.1002/sia.1264
Magnetic Properties of Ordered and Disordered Spinel‐Phase Ferrimagnets
Matthew A. Willard, Yuichiro Nakamura, David E. Laughlin and Michael E. McHenry Journal of the American Ceramic Society 82 (12) 3342 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb02249.x
Microstructural and magnetic characterization of alumina-iron nanocomposites
A. Marchand, X. Devaux, B. Barbara, et al. Journal of Materials Science 28 (8) 2217 (1993) https://doi.org/10.1007/BF00367587
Heat capacity and phase equilibria of almandine, Fe3Al2Si3O12
L.M Anovitz, E.J Essene, G.W Metz, et al. Geochimica et Cosmochimica Acta 57 (17) 4191 (1993) https://doi.org/10.1016/0016-7037(93)90315-N
The cobalt-molybdenum interaction in CoMo/SiO2 catalysts: A CO-oxidation study
M. de Boer, E.P.F.M. Koch, R.J. Blaauw, E.R. Stobbe, A.N.J.M. Hoffman, L.A. Boot, A.J. van Dillen and J.W. Geus Solid State Ionics 63-65 736 (1993) https://doi.org/10.1016/0167-2738(93)90188-9
Dictionary of Inorganic Compounds
J. E. Macintyre, F. M. Daniel and V. M. Stirling Dictionary of Inorganic Compounds 1 (1992) https://doi.org/10.1007/978-1-4899-4638-6_1
An internally consistent model for the thermodynamic properties of Fe?Mg-titanomagnetite-aluminate spinels
Richard O. Sack and Mark S. Ghiorso Contributions to Mineralogy and Petrology 106 (4) 474 (1991) https://doi.org/10.1007/BF00321989
Magnetism and superconductivity in the spinel system Li1−xMxTi2O4 (M = Mn2+, Mg2+)
P.M. Lambert, M.R. Harrison and P.P. Edwards Journal of Solid State Chemistry 75 (2) 332 (1988) https://doi.org/10.1016/0022-4596(88)90173-9
Effect of pressure on the Curie temperature of CoCr2O4
T. Kanomata, T. Tsuda, H. Yasui and T. Kaneko Physics Letters A 134 (3) 196 (1988) https://doi.org/10.1016/0375-9601(88)90820-1
Magnetic properties of layer AB2X4 compounds
S. Viticoli Progress in Crystal Growth and Characterization 13 (2) 105 (1986) https://doi.org/10.1016/0146-3535(86)90032-8
High‐Temperature Cation Distributions in Fe3‐FeAl2O4
T. O. Mason Journal of the American Ceramic Society 68 (3) (1985) https://doi.org/10.1111/j.1151-2916.1985.tb09635.x
Exafs Studies of Defects in β-Alumina Superionic Conductors
W. L. Roth and R. Wong MRS Proceedings 41 (1984) https://doi.org/10.1557/PROC-41-301
Magnetic Properties of a Non-Stoichiometric Zn-Mn-Fe Spinel
Zbigniew M. Stadnik and Yoriyoshi Kawai Journal of the Physical Society of Japan 53 (8) 2761 (1984) https://doi.org/10.1143/JPSJ.53.2761
Effect of Reducing Atmosphere on Minerals and Iron Oxides Developed in Fired Clays: The Role of Ca
Y. MANIATIS, A. SIMOPOULOS, A. KOSTIKAS and V. PERDIKATSIS Journal of the American Ceramic Society 66 (11) 773 (1983) https://doi.org/10.1111/j.1151-2916.1983.tb10561.x
Handbook of Ferromagnetic Materials
S. Krupička and P. Novák Handbook of Ferromagnetic Materials 3 189 (1982) https://doi.org/10.1016/S1574-9304(05)80090-2
Magnetic phase diagram of spinel spin-glasses
Charles P. Poole and Horacio A. Farach Zeitschrift für Physik B Condensed Matter 47 (1) 55 (1982) https://doi.org/10.1007/BF01686183
Structural, magnetic and electrical study of MgCoMnO4
S G Joshi, D K Kulkarni and P V Khandekar Bulletin of Materials Science 4 (1) 47 (1982) https://doi.org/10.1007/BF02744465
Thermodynamic Properties of Fe3O4‐FeAl2O4 Spinel Solid Solutions
A. PETRIC, K.T. JACOB and C.B. ALCOCK Journal of the American Ceramic Society 64 (11) 632 (1981) https://doi.org/10.1111/j.1151-2916.1981.tb15860.x
Etude des proprietes magnetiques, Mössbauer et electriques du compose lamellaire FeGa2S4α 1T
O. Gorochov, C. Levy-Clément, L. Dogguy-Smiri and M.-P. Pardo Materials Research Bulletin 16 (12) 1493 (1981) https://doi.org/10.1016/0025-5408(81)90019-2
Cation Distribution and Defect Chemistry of Iron‐Aluminate Spinels
T. O. MASON and H. K. BOWEN Journal of the American Ceramic Society 64 (2) 86 (1981) https://doi.org/10.1111/j.1151-2916.1981.tb09582.x
Key Elements: B, Al, Ga, In, Tl - Be
R. Allmann, W. Pies and A. Weiss Landolt-Börnstein - Group III Condensed Matter, Key Elements: B, Al, Ga, In, Tl - Be 7d2 202 (1980) https://doi.org/10.1007/10201551_24
Thermodynamics of the Redox Equilibria and the Site Preference in(Fe1−yAly)3−δO4
Akio Nakamura, Shigeru Yamauchi, Kazuo Fueki and Takashi Mukaibo Bulletin of the Chemical Society of Japan 52 (4) 1019 (1979) https://doi.org/10.1246/bcsj.52.1019
Experimental evidence of a critical concentration for the long-range magnetic order in the A-sublattice of spinels
D. Fiorani and S. Viticoli Solid State Communications 29 (3) 239 (1979) https://doi.org/10.1016/0038-1098(79)91046-9
Magnetic properties of CoGa2O4
D. Fiorani and S. Viticoli Solid State Communications 25 (3) 155 (1978) https://doi.org/10.1016/0038-1098(78)91468-0
Magnetic interactions in CoM3+xGa2−xO4 spinel solid solutions: II. CoAlxGa2−xO4
D. Fiorani and S. Viticoli Journal of Solid State Chemistry 26 (2) 107 (1978) https://doi.org/10.1016/0022-4596(78)90139-1
Magnetic interactions in CoM3+xGa2−xO4 spinel solid solutions: I: CoRhxGa2−xO4
D. Fiorani and S. Viticoli Journal of Solid State Chemistry 26 (2) 101 (1978) https://doi.org/10.1016/0022-4596(78)90138-X
Temperature dependence of the magnetic structure of Fe2MoO4
H. Gamari-Seale and J. K. Yakinthos Physica Status Solidi (a) 41 (1) 147 (1977) https://doi.org/10.1002/pssa.2210410116
Ion-exchange equilibria between (Mn, Co)O solid solution and (Mn, Co) Cr2O4 and (Mn, Co) Al2O4 spinel solid solutions at 1100� C
K. T. Jacob and K. Fitzner Journal of Materials Science 12 (3) 481 (1977) https://doi.org/10.1007/BF00540270
Reactivity of Solids
Bernard Gillot, Abel Rousset, Jacques Paris and Pierre Barret Reactivity of Solids 125 (1977) https://doi.org/10.1007/978-1-4684-2340-2_16
Preparation et etude structurale des spinelles (FeAl2−2z`Cr2z)O4
F. Chassagneux and A. Rousset Journal of Solid State Chemistry 16 (1-2) 161 (1976) https://doi.org/10.1016/0022-4596(76)90018-9
Revised phase diagram and X‐ray data of The Mn3O4Al2O3 System in air
E. H. L. J. Dekker and G. D. Rieck Zeitschrift für anorganische und allgemeine Chemie 415 (1) 69 (1975) https://doi.org/10.1002/zaac.19754150110
The oxygen potential of the systems Fe+FeCr2O4+Cr2O3 and Fe+FeV2O4+V2O3 in the temperature range 750–1600°C
K. T. Jacob and C. B. Alcock Metallurgical Transactions B 6 (2) 215 (1975) https://doi.org/10.1007/BF02913562
Etude de la cinetique d'oxydation de magnetites finement divisees. I - Influence de la substitution par l'aluminium
Bernard Gillot, Joseph Tyranowicz and Abel Rousset Materials Research Bulletin 10 (8) 775 (1975) https://doi.org/10.1016/0025-5408(75)90190-7
Key Element: O. Part 1
W. Pies and A. Weiss Landolt-Börnstein - Group III Condensed Matter, Key Element: O. Part 1 7b1 565 (1975) https://doi.org/10.1007/10201470_30
Exchange Integral in Normal Spinels with only A‐A Interactions
D. Scheerlinck, S. Hautecler and W. Wegener physica status solidi (b) 70 (1) (1975) https://doi.org/10.1002/pssb.2220700160
References for III/7
W. Pies and A. Weiss Landolt-Börnstein - Group III Condensed Matter, References for III/7 7g 203 (1974) https://doi.org/10.1007/10201585_13
Nuclear quadrupole couplings and polarizability of the oxygen ion in spinel-structure compounds
R Kirsch, A Gerard and M Wautelet Journal of Physics C: Solid State Physics 7 (19) 3633 (1974) https://doi.org/10.1088/0022-3719/7/19/022
Physik der Ferrite und der verwandten magnetischen Oxide
Svatopluk Krupička Physik der Ferrite und der verwandten magnetischen Oxide 185 (1973) https://doi.org/10.1007/978-3-322-83522-2_3
Magnetic ordering in LiCr1−xFexO2
A. Tauber, W.M. Moller and E. Banks Journal of Solid State Chemistry 4 (1) 138 (1972) https://doi.org/10.1016/0022-4596(72)90142-9
The electrical properties of the single crystal spinel CoAl2O4
N. G. Matveeva and A. I. Shelykh physica status solidi (b) 50 (1) 83 (1972) https://doi.org/10.1002/pssb.2220500110
Magnetic behavior of quenched and aged CoFe2O4–Co3O4 alloys
Masatake Takahashi and Morris E. Fine Journal of Applied Physics 43 (10) 4205 (1972) https://doi.org/10.1063/1.1660897
Neutron-diffraction determination of magnetic structures
D. Cox IEEE Transactions on Magnetics 8 (1) 161 (1972) https://doi.org/10.1109/TMAG.1972.1067272
Pages :
1 à 100 sur 113 articles