Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Magnetism evolution in Ni-doped Co3O4

Xiaobo Wang, Congmian Zhen, Jiaxuan Feng, Xiaoxu Zhang, Lu Liu, Li Ma, Guoke Li, Dewei Zhao and Denglu Hou
Physica B: Condensed Matter 701 416931 (2025)
https://doi.org/10.1016/j.physb.2025.416931

Thermodynamic assessment of the Al2O3-Fe2O3-FeO system by introducing the AlO2−1 species into the thermodynamic model for liquid phase

Fengyang Gao, Yuling Liu, Ligang Zhang, Hans Jürgen Seifert and Yong Du
Journal of Molecular Liquids 425 127191 (2025)
https://doi.org/10.1016/j.molliq.2025.127191

Inter-cation charge transfer mediated antiferromagnetism in Co1+xIr2−xS4

Liang-Wen Ji, Si-Qi Wu, Bai-Zhuo Li, Wu-Zhang Yang, Shi-Jie Song, Yi Liu, Jing Li, Zhi Ren and Guang-Han Cao
Physical Review B 110 (15) (2024)
https://doi.org/10.1103/PhysRevB.110.155139

In situ and Operando Characterisation in the Preferential Oxidation of Carbon Monoxide over Base Metal Oxide Catalysts: A Review

Thulani M. Nyathi, Mohamed I. Fadlalla and Michael Claeys
ChemCatChem 16 (14) (2024)
https://doi.org/10.1002/cctc.202400285

Influence of fabrication conditions on the structural characteristics and the magnetic properties of FeAl2O4

Takayuki Nakane, Satoshi Ishii, Tetsuo Uchikoshi and Takashi Naka
Journal of the American Ceramic Society 106 (4) 2317 (2023)
https://doi.org/10.1111/jace.18915

Strong correlation between structure and magnetic ordering in tetragonally distorted off-stoichiometric spinels Mn1.15Co1.85O4 and Mn1.17Co1.60Cu0.23O4

P. Pramanik, M. Reehuis, M. Tovar, et al.
Physical Review Materials 6 (3) (2022)
https://doi.org/10.1103/PhysRevMaterials.6.034407

On the complexity of spinels: Magnetic, electronic, and polar ground states

Vladimir Tsurkan, Hans-Albrecht Krug von Nidda, Joachim Deisenhofer, Peter Lunkenheimer and Alois Loidl
Physics Reports 926 1 (2021)
https://doi.org/10.1016/j.physrep.2021.04.002

The magnetic, electronic, optical, and structural properties of the AB2O4 (A = Mn, Fe, co; B = Al, Ga, In) spinels: Ab initio study

V.S. Zhandun
Journal of Magnetism and Magnetic Materials 533 168015 (2021)
https://doi.org/10.1016/j.jmmm.2021.168015

Support and gas environment effects on the preferential oxidation of carbon monoxide over Co3O4 catalysts studied in situ

Thulani M. Nyathi, Mohamed I. Fadlalla, Nico Fischer, et al.
Applied Catalysis B: Environmental 297 120450 (2021)
https://doi.org/10.1016/j.apcatb.2021.120450

Competing ferro- and antiferromagnetic exchange drives shape-selective $$\hbox{Co}_3\hbox{O}_4$$ nanomagnetism

Michael Shepit, Vinod K. Paidi, Charles A. Roberts and Johan van Lierop
Scientific Reports 10 (1) (2020)
https://doi.org/10.1038/s41598-020-77650-6

Environment-Dependent Catalytic Performance and Phase Stability of Co3O4in the Preferential Oxidation of Carbon Monoxide StudiedIn Situ

Thulani M. Nyathi, Nico Fischer, Andrew P. E. York and Michael Claeys
ACS Catalysis 10 (20) 11892 (2020)
https://doi.org/10.1021/acscatal.0c02653

Spectroscopic and magnetic investigations of a spin-frustrated Mn-doped CoAl2O4 spinel

Suman Kalyan Pradhan, Biswajit Dalal, Ankita Sarkar and Subodh Kumar De
Physical Chemistry Chemical Physics 21 (2) 842 (2019)
https://doi.org/10.1039/C8CP07140C

Combined Theoretical Approach for Identifying Battery Materials: Al3+ Mobility in Oxides

Tina Nestler, Falk Meutzner, Artem A. Kabanov, et al.
Chemistry of Materials 31 (3) 737 (2019)
https://doi.org/10.1021/acs.chemmater.8b03631

Evolution of magnetic and orbital properties in the magnetically diluted A -site spinel Cu1−xZnxRh2O4

A. V. Zakrzewski, S. Gangopadhyay, G. J. MacDougall, et al.
Physical Review B 97 (21) (2018)
https://doi.org/10.1103/PhysRevB.97.214411

Ferrimagnetism in manganese-rich gallium and aluminium spinels due to mixed valence Mn2+–Mn3+ states

Maged F. Bekheet, Lukas Schlicker, Andrew Doran, Konrad Siemensmeyer and Aleksander Gurlo
Dalton Transactions 47 (8) 2727 (2018)
https://doi.org/10.1039/C7DT04765G

Synthesis and Characterization of Co3O4-MnxCo3-xO4 Core-Shell Nanoparticles

Ning Bian, Robert A. Mayanovic and Mourad Benamara
MRS Advances 3 (47-48) 2899 (2018)
https://doi.org/10.1557/adv.2018.453

Linear magnetoelectric effect as a signature of long-range collinear antiferromagnetic ordering in the frustrated spinel CoAl2O4

Somnath Ghara, N. V. Ter-Oganessian and A. Sundaresan
Physical Review B 95 (9) (2017)
https://doi.org/10.1103/PhysRevB.95.094404

Spin glass behavior in frustrated quantum spin system CuAl2O4with a possible orbital liquid state

R Nirmala, Kwang-Hyun Jang, Hasung Sim, et al.
Journal of Physics: Condensed Matter 29 (13) 13LT01 (2017)
https://doi.org/10.1088/1361-648X/aa5c72

Magnetostructural coupling and magnetodielectric effects in the A -site cation-ordered spinel LiFeCr4O8

Rana Saha, R. Dhanya, Christophe Bellin, et al.
Physical Review B 96 (21) (2017)
https://doi.org/10.1103/PhysRevB.96.214439

Magnetically tunable bipolar switching of the exchange-bias field in Co 2 TiO 4

A. Wei, S. Tao, Y. Fang, et al.
Journal of Magnetism and Magnetic Materials 441 361 (2017)
https://doi.org/10.1016/j.jmmm.2017.06.002

Chemically synthesized magnetic Co–Fe–Ga alloy nanoparticles

Takatomo Imai and Mutsuhiro Shima
Japanese Journal of Applied Physics 56 (1S) 01AE04 (2017)
https://doi.org/10.7567/JJAP.56.01AE04

Size dependent stability of cobalt nanoparticles on silica under high conversion Fischer–Tropsch environment

Moritz Wolf, Hendrik Kotzé, Nico Fischer and Michael Claeys
Faraday Discussions 197 243 (2017)
https://doi.org/10.1039/C6FD00200E

Revisiting the ground state of CoAl2O4 : Comparison to the conventional antiferromagnet MnAl2O4

G. J. MacDougall, A. A. Aczel, Yixi Su, et al.
Physical Review B 94 (18) (2016)
https://doi.org/10.1103/PhysRevB.94.184422

First-principles electronic structure calculations for the whole spinel oxide solid solution range MnxCo3−xO4 (0 ≤ x ≤ 3) and their comparison with experimental data

Rémi Arras, Thi Ly Le, Sophie Guillemet-Fritsch, Pascal Dufour and Christophe Tenailleau
Physical Chemistry Chemical Physics 18 (37) 26166 (2016)
https://doi.org/10.1039/C6CP05554K

Critical Assessment and Thermodynamic Modeling of the Al-Fe-O System

Denis Shishin, Viktoria Prostakova, Evgueni Jak and Sergei A. Decterov
Metallurgical and Materials Transactions B 47 (1) 397 (2016)
https://doi.org/10.1007/s11663-015-0493-9

Compressibility and structural stability of spinel-type MnIn2O4

Maged F. Bekheet, Leonid Dubrovinsky and Aleksander Gurlo
Journal of Solid State Chemistry 230 301 (2015)
https://doi.org/10.1016/j.jssc.2015.07.016

A new, layered monoclinic phase of Co3O4 at high pressure

Thanayut Kaewmaraya, Wei Luo, Xiao Yang, Puspamitra Panigrahi and Rajeev Ahuja
Physical Chemistry Chemical Physics 17 (30) 19957 (2015)
https://doi.org/10.1039/C5CP02126J

Synthesis of cobalt aluminate nanopigments by a non-aqueous sol–gel route

Mohamed Karmaoui, Nuno J. O. Silva, Vitor S. Amaral, et al.
Nanoscale 5 (10) 4277 (2013)
https://doi.org/10.1039/c3nr34229h

Spin Glass Order by Antisite Disorder in the Highly Frustrated Spinel Oxide CoAl2O4

Kentaro Hanashima, Yuta Kodama, Daisuke Akahoshi, Chikahide Kanadani and Toshiaki Saito
Journal of the Physical Society of Japan 82 (2) 024702 (2013)
https://doi.org/10.7566/JPSJ.82.024702

Experimental evidence of a collinear antiferromagnetic ordering in the frustrated CoAl2O4spinel

B. Roy, Abhishek Pandey, Q. Zhang, et al.
Physical Review B 88 (17) (2013)
https://doi.org/10.1103/PhysRevB.88.174415

Low temperature synthesis of nanocrystalline MnIn2O4 spinel

Maged F. Bekheet, Gerhard Miehe, Claudia Fasel, Aleksander Gurlo and Ralf Riedel
Dalton Transactions 41 (12) 3374 (2012)
https://doi.org/10.1039/c2dt12473d

Kinetically inhibited order in a diamond-lattice antiferromagnet

Gregory J. MacDougall, Delphine Gout, Jerel L. Zarestky, et al.
Proceedings of the National Academy of Sciences 108 (38) 15693 (2011)
https://doi.org/10.1073/pnas.1107861108

Evolution of magnetic states in frustrated diamond lattice antiferromagneticCo(Al1−xCox)2O4spinels

O. Zaharko, A. Cervellino, V. Tsurkan, N. B. Christensen and A. Loidl
Physical Review B 81 (6) (2010)
https://doi.org/10.1103/PhysRevB.81.064416

Microscopic evidence for the stacking faults and metallic properties of a triangular lattice CoO2with a three-layer structure

Masashige Onoda and Asami Sugawara
Journal of Physics: Condensed Matter 22 (3) 035602 (2010)
https://doi.org/10.1088/0953-8984/22/3/035602

Magnetic dilution of the iron sublattice in CoFe2−xScxO4 (0≤x≤1)

C. Lefevre, F. Roulland, N. Viart, J.M. Greneche and G. Pourroy
Journal of Solid State Chemistry 183 (11) 2623 (2010)
https://doi.org/10.1016/j.jssc.2010.09.004

Magnetic frustration on the diamond lattice of theA-site magnetic spinelsCoAl2−xGaxO4: The role of lattice expansion and site disorder

Brent C. Melot, Katharine Page, Ram Seshadri, et al.
Physical Review B 80 (10) (2009)
https://doi.org/10.1103/PhysRevB.80.104420

Excitation spectrum and magnetic field effects in a quantum critical spin-orbital system: The case ofFeSc2S4

Gang Chen, Andreas P. Schnyder and Leon Balents
Physical Review B 80 (22) (2009)
https://doi.org/10.1103/PhysRevB.80.224409

Order-by-disorder and spiral spin-liquid in frustrated diamond-lattice antiferromagnets

Doron Bergman, Jason Alicea, Emanuel Gull, Simon Trebst and Leon Balents
Nature Physics 3 (7) 487 (2007)
https://doi.org/10.1038/nphys622

Synthesis and characterization of nanophasic LaCoO3 powders

L. Armelao, G. Bandoli, D. Barreca, et al.
Surface and Interface Analysis 34 (1) 112 (2002)
https://doi.org/10.1002/sia.1264

Magnetic Properties of Ordered and Disordered Spinel‐Phase Ferrimagnets

Matthew A. Willard, Yuichiro Nakamura, David E. Laughlin and Michael E. McHenry
Journal of the American Ceramic Society 82 (12) 3342 (1999)
https://doi.org/10.1111/j.1151-2916.1999.tb02249.x

Microstructural and magnetic characterization of alumina-iron nanocomposites

A. Marchand, X. Devaux, B. Barbara, et al.
Journal of Materials Science 28 (8) 2217 (1993)
https://doi.org/10.1007/BF00367587

The cobalt-molybdenum interaction in CoMo/SiO2 catalysts: A CO-oxidation study

M. de Boer, E.P.F.M. Koch, R.J. Blaauw, E.R. Stobbe, A.N.J.M. Hoffman, L.A. Boot, A.J. van Dillen and J.W. Geus
Solid State Ionics 63-65 736 (1993)
https://doi.org/10.1016/0167-2738(93)90188-9

An internally consistent model for the thermodynamic properties of Fe?Mg-titanomagnetite-aluminate spinels

Richard O. Sack and Mark S. Ghiorso
Contributions to Mineralogy and Petrology 106 (4) 474 (1991)
https://doi.org/10.1007/BF00321989

Magnetism and superconductivity in the spinel system Li1−xMxTi2O4 (M = Mn2+, Mg2+)

P.M. Lambert, M.R. Harrison and P.P. Edwards
Journal of Solid State Chemistry 75 (2) 332 (1988)
https://doi.org/10.1016/0022-4596(88)90173-9

Magnetic Properties of a Non-Stoichiometric Zn-Mn-Fe Spinel

Zbigniew M. Stadnik and Yoriyoshi Kawai
Journal of the Physical Society of Japan 53 (8) 2761 (1984)
https://doi.org/10.1143/JPSJ.53.2761

Effect of Reducing Atmosphere on Minerals and Iron Oxides Developed in Fired Clays: The Role of Ca

Y. MANIATIS, A. SIMOPOULOS, A. KOSTIKAS and V. PERDIKATSIS
Journal of the American Ceramic Society 66 (11) 773 (1983)
https://doi.org/10.1111/j.1151-2916.1983.tb10561.x

Magnetic phase diagram of spinel spin-glasses

Charles P. Poole and Horacio A. Farach
Zeitschrift für Physik B Condensed Matter 47 (1) 55 (1982)
https://doi.org/10.1007/BF01686183

Structural, magnetic and electrical study of MgCoMnO4

S G Joshi, D K Kulkarni and P V Khandekar
Bulletin of Materials Science 4 (1) 47 (1982)
https://doi.org/10.1007/BF02744465

Etude des proprietes magnetiques, Mössbauer et electriques du compose lamellaire FeGa2S4α 1T

O. Gorochov, C. Levy-Clément, L. Dogguy-Smiri and M.-P. Pardo
Materials Research Bulletin 16 (12) 1493 (1981)
https://doi.org/10.1016/0025-5408(81)90019-2

Key Elements: B, Al, Ga, In, Tl - Be

R. Allmann, W. Pies and A. Weiss
Landolt-Börnstein - Group III Condensed Matter, Key Elements: B, Al, Ga, In, Tl - Be 7d2 202 (1980)
https://doi.org/10.1007/10201551_24

Thermodynamics of the Redox Equilibria and the Site Preference in(Fe1−yAly)3−δO4

Akio Nakamura, Shigeru Yamauchi, Kazuo Fueki and Takashi Mukaibo
Bulletin of the Chemical Society of Japan 52 (4) 1019 (1979)
https://doi.org/10.1246/bcsj.52.1019

Experimental evidence of a critical concentration for the long-range magnetic order in the A-sublattice of spinels

D. Fiorani and S. Viticoli
Solid State Communications 29 (3) 239 (1979)
https://doi.org/10.1016/0038-1098(79)91046-9

Ion-exchange equilibria between (Mn, Co)O solid solution and (Mn, Co) Cr2O4 and (Mn, Co) Al2O4 spinel solid solutions at 1100� C

K. T. Jacob and K. Fitzner
Journal of Materials Science 12 (3) 481 (1977)
https://doi.org/10.1007/BF00540270

Revised phase diagram and X‐ray data of The Mn3O4Al2O3 System in air

E. H. L. J. Dekker and G. D. Rieck
Zeitschrift für anorganische und allgemeine Chemie 415 (1) 69 (1975)
https://doi.org/10.1002/zaac.19754150110

The oxygen potential of the systems Fe+FeCr2O4+Cr2O3 and Fe+FeV2O4+V2O3 in the temperature range 750–1600°C

K. T. Jacob and C. B. Alcock
Metallurgical Transactions B 6 (2) 215 (1975)
https://doi.org/10.1007/BF02913562

Etude de la cinetique d'oxydation de magnetites finement divisees. I - Influence de la substitution par l'aluminium

Bernard Gillot, Joseph Tyranowicz and Abel Rousset
Materials Research Bulletin 10 (8) 775 (1975)
https://doi.org/10.1016/0025-5408(75)90190-7

Nuclear quadrupole couplings and polarizability of the oxygen ion in spinel-structure compounds

R Kirsch, A Gerard and M Wautelet
Journal of Physics C: Solid State Physics 7 (19) 3633 (1974)
https://doi.org/10.1088/0022-3719/7/19/022

Magnetic behavior of quenched and aged CoFe2O4–Co3O4 alloys

Masatake Takahashi and Morris E. Fine
Journal of Applied Physics 43 (10) 4205 (1972)
https://doi.org/10.1063/1.1660897