La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
E. Stoll , P. Fischer , W. Hälg , G. Maier
J. Phys. France, 25 5 (1964) 447-448
Citations de cet article :
57 articles
Energetics and diffusion kinetics of point defects in MnCr2O4 spinel from first principles
R. Seaton Ullberg, Xueyang Wu, Michael R. Tonks and Simon R. Phillpot Journal of Physics and Chemistry of Solids 181 111519 (2023) https://doi.org/10.1016/j.jpcs.2023.111519
Characterization of order-disorder transition in MgAl2O4:Cr3+ spinel using photoluminescence
Chengsi Wang, Andy H. Shen and Yungui Liu Journal of Luminescence 227 117552 (2020) https://doi.org/10.1016/j.jlumin.2020.117552
Cation ordering and microwave dielectric properties of a LiGaTiO4 spinel by quenching
Akinori Kan, Hiroto Okazaki and Hirotaka Ogawa Japanese Journal of Applied Physics 58 (SL) SLLE01 (2019) https://doi.org/10.7567/1347-4065/ab34af
From cation flexibility to multifaceted industrial adoptability: a voyage to the resourceful spinel
Debasmita Dwibedi Advances in Applied Ceramics 117 (2) 85 (2018) https://doi.org/10.1080/17436753.2017.1371946
Cu 2+ -modified physical properties of Cobalt-Nickel ferrite
K. Rajasekhar Babu, K. Rama Rao and B. Rajesh Babu Journal of Magnetism and Magnetic Materials 434 118 (2017) https://doi.org/10.1016/j.jmmm.2017.03.044
Lithium Doping of MgAl2O4 and ZnAl2O4 Investigated by High-Resolution Solid State NMR
E. S. (Merijn) Blaakmeer, Fabio Rosciano and Ernst R. H. van Eck The Journal of Physical Chemistry C 119 (14) 7565 (2015) https://doi.org/10.1021/jp512304e
Structural and spectroscopic properties of Yb3+-doped MgAl2O4nanocrystalline spinel
Rafal J. Wiglusz, Georges Boulon, Yannick Guyot, et al. Dalton Trans. 43 (21) 7752 (2014) https://doi.org/10.1039/C3DT53644K
Structural and spectroscopic properties of Yb3+-doped MgAl2O4nanocrystalline spinel
Rafal J. Wiglusz, Georges Boulon, Yannick Guyot, Malgorzata Guzik, Dariusz Hreniak and Wieslaw Strek Dalton Trans. 43 (21) 7752 (2014) https://doi.org/10.1039/c3dt53644k
Study of cation distribution for Cu–Co nanoferrites synthesized by the sol–gel method
Imran Ahmad, Tahir Abbas, M.U. Islam and Asghari Maqsood Ceramics International 39 (6) 6735 (2013) https://doi.org/10.1016/j.ceramint.2013.02.001
Preparation of Ni1−Mn Fe2O4 ferrites by sol–gel method and study of their cation distribution
Abid Hussain, Tahir Abbas and Shahida B. Niazi Ceramics International 39 (2) 1221 (2013) https://doi.org/10.1016/j.ceramint.2012.07.049
Synthesis, characterization, optical absorption, luminescence and defect centres in Er3+ and Yb3+ co-doped MgAl2O4 phosphors
V. Singh, V. Kumar Rai, S. Watanabe, et al. Applied Physics B 108 (2) 437 (2012) https://doi.org/10.1007/s00340-012-4970-4
Cation distribution in nanocrystalline Al3+ and Cr3+ co-substituted CoFe2O4
S.S. More, R.H. Kadam, A.B. Kadam, et al. Journal of Alloys and Compounds 502 (2) 477 (2010) https://doi.org/10.1016/j.jallcom.2010.04.201
Investigation of defect centres responsible for TL/OSL in MgAl2O4:Tb3+
E. Alagu Raja, Sanjeev Menon, Bhushan Dhabekar, N.S. Rawat and T.K. Gundu Rao Journal of Luminescence 129 (8) 829 (2009) https://doi.org/10.1016/j.jlumin.2009.03.001
Radiation effects in lanthanum pyrozirconate
A. Chartier, J.-P. Crocombette, C. Meis, W.J. Weber and L.R. Corrales Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 250 (1-2) 17 (2006) https://doi.org/10.1016/j.nimb.2006.04.079
Molecular Dynamic Simulation of Disorder Induced Amorphization in Pyrochlore
A. Chartier, C. Meis, J.-P. Crocombette, W. J. Weber and L. R. Corrales Physical Review Letters 94 (2) (2005) https://doi.org/10.1103/PhysRevLett.94.025505
Cation distribution in NixMn1−xFe2O4 ferrites
Qiang-min Wei, Jian-bao Li, Yong-jun Chen and Yong-sheng Han Materials Chemistry and Physics 74 (3) 340 (2002) https://doi.org/10.1016/S0254-0584(01)00487-4
X-ray study of cation distribution in NiMn1−xFe2−xO4 ferrites
Qiang-min Wei, Jian-biao Li, Yong-jun Chen and Yong-sheng Han Materials Characterization 47 (3-4) 247 (2001) https://doi.org/10.1016/S1044-5803(01)00177-2
First-principles study of cation distribution in eighteen closed-shell AIIB2IIIO4 and AIVB2IIO4 spinel oxides
Su-Huai Wei and S. Zhang Physical Review B 63 (4) (2001) https://doi.org/10.1103/PhysRevB.63.045112
Structure of Spinel
Kurt E. Sickafus, John M. Wills and Norman W. Grimes Journal of the American Ceramic Society 82 (12) 3279 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb02241.x
Cation Disorder and Vacancy Distribution in Nonstoichiometric Magnesium Aluminate Spinel, MgO·xAl2O3
Robert I. Sheldon, Thomas Hartmann, Kurt E. Sickafus, Angel Ibarra, Brian L. Scott, Dimitri N. Argyriou, Allen C. Larson and Robert B. Von Dreele Journal of the American Ceramic Society 82 (12) 3293 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb02242.x
Ceramic Microstructures
George C. Wei, Seung-Joon Jeon, Changmo Sung and William H. Rhodes Ceramic Microstructures 311 (1998) https://doi.org/10.1007/978-1-4615-5393-9_28
Recovery of neutron-induced defects in near-stoichiometric spinel ceramics irradiated at around 500°C
Toyohiko Yano, Hiroshi Sawada, Andon Insani, Hiroyuki Miyazaki and Takayoshi Iseki Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 116 (1-4) 131 (1996) https://doi.org/10.1016/0168-583X(96)00023-7
Cation disorder in high dose, neutron-irradiated spinel
K.E. Sickafus, A.C. Larson, N. Yu, et al. Journal of Nuclear Materials 219 128 (1995) https://doi.org/10.1016/0022-3115(94)00386-6
Formation of partially inverse Mg−Al spinel by grinding MgO with γ-Al2O3
P. Bar-On, I. J. Lin, S. Nadiv and M. Melamud Journal of Thermal Analysis 42 (1) 207 (1994) https://doi.org/10.1007/BF02547002
X-ray photoelectron diffraction studies of the surface chemistry of non-stoichiometric synthetic spinel
Lynne A. Ash and Stephen Evans Surface and Interface Analysis 20 (13) 1075 (1993) https://doi.org/10.1002/sia.740201308
Use of luminescence of Mn2+ and Cr3+ in probing the disordering process in MgAl2O4 spinels
J.M.G Tijero and A Ibarra Journal of Physics and Chemistry of Solids 54 (2) 203 (1993) https://doi.org/10.1016/0022-3697(93)90309-F
On the cation vacancy distribution in MgAl2O4spinels
A. Ibarra, R. Vila and M. Jiménez de Castro Philosophical Magazine Letters 64 (1) 45 (1991) https://doi.org/10.1080/09500839108214665
Thermoluminescent processes ofMgAl2O4irradiated at room temperature
A. Ibarra, D. F. Mariani and M. Jiménez de Castro Physical Review B 44 (22) 12158 (1991) https://doi.org/10.1103/PhysRevB.44.12158
Thermoluminescence in MgAl2O4above 300K
Angel Ibarra, Francisco Mariani, Rosalia Serna, Joaquin Molla and Miguel Jimenez De Castro Radiation Effects and Defects in Solids 119-121 (1) 63 (1991) https://doi.org/10.1080/10420159108224855
Grain‐Boundary Migration in Nonstoichiometric Solid Solutions of Magnesium Aluminate Spinel: I, Grain Growth Studies
Yet‐Ming Chiang and W. David Kingery Journal of the American Ceramic Society 72 (2) 271 (1989) https://doi.org/10.1111/j.1151-2916.1989.tb06113.x
DIRECT DETERMINATION OF CATION DISORDER IN MgAl2O4 SPINEL BY HIGH-RESOLUTION 27Al MAGIC-ANGLE-SPINNING NMR SPECTROSCOPY
G C Gobbi, R Christoffersen, M T Otten, B Miner, P R Buseck, G J Kennedy and C A Fyfe Chemistry Letters 14 (6) 771 (1985) https://doi.org/10.1246/cl.1985.771
The structure of copper aluminate: cation distribution at different temperatures and its implications for Cu/A1203 catalysts
Edward C. Marques, Robert Mark Friedman and Donald J. Dahm Applied Catalysis 19 (2) 387 (1985) https://doi.org/10.1016/S0166-9834(00)81760-1
Deformation of Ceramic Materials II
R. Duclos Deformation of Ceramic Materials II 159 (1984) https://doi.org/10.1007/978-1-4615-6802-5_11
Crystal chemistry of magnetic oxides part 1: General problems — Spinels
E. Pollert Progress in Crystal Growth and Characterization 9 (3-4) 263 (1984) https://doi.org/10.1016/0146-3535(84)90083-2
Kristallstrukturverfeinerung des Zinkaluminiumsulfids ZnAl2S4 (normale Spinellstruktur) mit Röntgen‐Einkristalldaten
H. J. Berthold, K. Köhler and R. Wartchow Zeitschrift für anorganische und allgemeine Chemie 496 (1) 7 (1983) https://doi.org/10.1002/zaac.19834960102
Investigation of the composition dependence of internal friction spectra in the MgAl2O4-Al2O3gamma spinel system
M. Halbwachs, P. Mazot, J. Woirgard and P. Veyssiere Radiation Effects 75 (1-4) 173 (1983) https://doi.org/10.1080/00337578308224699
Anelastic relaxation phenomena in plasma-sprayed (Al2O3)3MgO spinel with reference to diffusion process
M. Halbwachs, P. Mazot and J. Woirgard Physica Status Solidi (a) 76 (1) 157 (1983) https://doi.org/10.1002/pssa.2210760119
Optical spectra of MgAl2O4 crystals exposed to ionizing radiation
G. S. White, R. V. Jones and J. H. Crawford Journal of Applied Physics 53 (1) 265 (1982) https://doi.org/10.1063/1.331603
The formation of garnet in olivine-bearing metagabbros from the Adirondacks
Craig A. Johnson and Eric J. Essene Contributions to Mineralogy and Petrology 81 (3) 240 (1982) https://doi.org/10.1007/BF00371301
Study of the origin of the composition influence on the mechanical properties of Mgo.nAl2O3 spinels
R. Duclos, N. Doukhan and B. Escaig Acta Metallurgica 30 (7) 1381 (1982) https://doi.org/10.1016/0001-6160(82)90158-4
Key Elements: B, Al, Ga, In, Tl - Be
R. Allmann, W. Pies and A. Weiss Landolt-Börnstein - Group III Condensed Matter, Key Elements: B, Al, Ga, In, Tl - Be 7d2 147 (1980) https://doi.org/10.1007/10201551_21
Radiation damage in MgAl2O4
G. P. Summers, G. S. White, K. H. Lee and J. H. Crawford Physical Review B 21 (6) 2578 (1980) https://doi.org/10.1103/PhysRevB.21.2578
Elasticity and phase equilibria of spinel disproportionation reactions
R. C. Liebermann, I. Jackson and A. E. Ringwood Geophysical Journal International 50 (3) 553 (1977) https://doi.org/10.1111/j.1365-246X.1977.tb01335.x
Deformation in spinel
T. E. Mitchell, L. Hwang and A. H. Heuer Journal of Materials Science 11 (2) 264 (1976) https://doi.org/10.1007/BF00551437
T.E.M. study of high temperature precipitation in (Al2O3)n MgO spinels
N. Doukhan, J.C. Doukhan and B. Escaig Materials Research Bulletin 11 (2) 125 (1976) https://doi.org/10.1016/0025-5408(76)90067-2
References for III/7
W. Pies and A. Weiss Landolt-Börnstein - Group III Condensed Matter, References for III/7 7g 203 (1974) https://doi.org/10.1007/10201585_13
The distribution of nickel ions among octahedral and tetrahedral sites in NiAl2O4MgAl2O4 solid solutions
P. Porta, F.S. Stone and R.G. Turner Journal of Solid State Chemistry 11 (2) 135 (1974) https://doi.org/10.1016/0022-4596(74)90108-X
Disproportionation of spinels to mixed oxides: significance of cation configuration and implications for the mantle
I.N.S. Jackson, R.C. Liebermann and A.E. Ringwood Earth and Planetary Science Letters 24 (2) 203 (1974) https://doi.org/10.1016/0012-821X(74)90097-1
Resonance paramagnetique electronique du manganese divalent dans ZnAl2O4
Edgar Soulié, Maurice Drifford and Paul Rigny Solid State Communications 12 (5) 345 (1973) https://doi.org/10.1016/0038-1098(73)90770-9
Handbook of Geochemistry
E. Matzat and K. Shiraki Handbook of Geochemistry, Handbook of Geochemistry 2 / 3 329 (1972) https://doi.org/10.1007/978-3-642-65039-0_10
Equilibrium Cation Distribution in NiAl2O4, CuAl2O4, and ZnAl2O4 Spinels
RICHARD F. COOLEY and JAMES S. REED Journal of the American Ceramic Society 55 (8) 395 (1972) https://doi.org/10.1111/j.1151-2916.1972.tb11320.x
Part B
D. Bonnenberg and H.P.J. Wijn Landolt-Börnstein - Group III Condensed Matter, Part B 4b 446 (1970) https://doi.org/10.1007/10201438_127
Part B
D. Bonnenberg and H.P.J. Wijn Landolt-Börnstein - Group III Condensed Matter, Part B 4b 476 (1970) https://doi.org/10.1007/10201438_131
Thermodynamics and Defect Chemistry of Some Oxide Solid Solutions Part III. Defect Equilibria and the Formalism of Pair Interactions
F. C. M. Driessens Berichte der Bunsengesellschaft für physikalische Chemie 72 (9-10) 1123 (1968) https://doi.org/10.1002/bbpc.19680720913
The thermodynamics of cation distributions in simple spinels
A. Navrotsky and O.J. Kleppa Journal of Inorganic and Nuclear Chemistry 29 (11) 2701 (1967) https://doi.org/10.1016/0022-1902(67)80008-3
Advances in Inorganic Chemistry and Radiochemistry
G.E. Bacon Advances in Inorganic Chemistry and Radiochemistry 8 225 (1966) https://doi.org/10.1016/S0065-2792(08)60203-4
The Sign of the Trigonal Field Splitting of B-Site Ions in Spinel
S. B. Berger Journal of Applied Physics 36 (3) 1048 (1965) https://doi.org/10.1063/1.1714094